Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Microdevices ; 19(4): 88, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28948399

RESUMEN

To assess the visualization and efficacy of a wireless resonant circuit (wRC) catheter system for carotid artery occlusion and embolectomy under real-time MRI guidance in vivo, and to compare MR imaging modality with x-ray for analysis of qualitative physiological measures of blood flow at baseline and after embolectomy. The wRC catheter system was constructed using a MR compatible PEEK fiber braided catheter (Penumbra, Inc, Alameda, CA) with a single insulated longitudinal copper loop soldered to a printed circuit board embedded within the catheter wall. In concordance with IACUC protocol (AN103047), in vivo carotid artery navigation and embolectomy were performed in four farm pigs (40-45 kg) under real-time MRI at 1.5T. Industry standard clots were introduced in incremental amounts until adequate arterial occlusion was noted in a total of n=13 arteries. Baseline vasculature and restoration of blood flow were confirmed via MR and x-ray imaging, and graded by the Thrombolysis in Cerebral Infarction (TICI) scale. Wilcoxon signed-rank tests were used to analyze differences in recanalization status between DSA and MRA imaging. Successful recanalizations (TICI 2b/3) were compared to clinical rates reported in literature via binomial tests. The wRC catheter system was visible both on 5° sagittal bSSFP and coronal GRE sequence. Successful recanalization was demonstrated in 11 of 13 occluded arteries by DSA analysis and 8 of 13 by MRA. Recanalization rates based on DSA (0.85) and MRA (0.62) were not significantly different from the clinical rate of mechanical aspiration thrombectomy reported in literature. Lastly, a Wilcoxon signed rank test indicated no significant difference between TICI scores analyzed by DSA and MRA. With demonstrated compatibility and visualization under MRI, the wRC catheter system is effective for in vivo endovascular embolectomy, suggesting progress towards clinical endovascular interventional MRI.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Cateterismo , Catéteres , Embolectomía , Imagen por Resonancia Magnética , Animales , Cateterismo/instrumentación , Cateterismo/métodos , Embolectomía/instrumentación , Embolectomía/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Porcinos
2.
Biomed Microdevices ; 18(6): 109, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27830455

RESUMEN

To computationally optimize the design of an endovascular magnetic filtration device that binds iron oxide nanoparticles and to validate simulations with experimental results of prototype devices in physiologic flow testing. Three-dimensional computational models of different endovascular magnetic filter devices assessed magnetic particle capture. We simulated a series of cylindrical neodymium N52 magnets and capture of 1500 iron oxide nanoparticles infused in a simulated 14 mm-diameter vessel. Device parameters varied included: magnetization orientation (across the diameter, "D", along the length, "L", of the filter), magnet outer diameter (3, 4, 5 mm), magnet length (5, 10 mm), and spacing between magnets (1, 3 mm). Top designs were tested in vitro using 89Zr-radiolabeled iron oxide nanoparticles and gamma counting both in continuous and multiple pass flow model. Computationally, "D" magnetized devices had greater capture than "L" magnetized devices. Increasing outer diameter of magnets increased particle capture as follows: "D" designs, 3 mm: 12.8-13.6 %, 4 mm: 16.6-17.6 %, 5 mm: 21.8-24.6 %; "L" designs, 3 mm: 5.6-10 %, 4 mm: 9.4-15.8 %, 5 mm: 14.8-21.2 %. In vitro, while there was significant capture by all device designs, with most capturing 87-93 % within the first two minutes, compared to control non-magnetic devices, there was no significant difference in particle capture with the parameters varied. The computational study predicts that endovascular magnetic filters demonstrate maximum particle capture with "D" magnetization. In vitro flow testing demonstrated no difference in capture with varied parameters. Clinically, "D" magnetized devices would be most practical, sized as large as possible without causing intravascular flow obstruction.


Asunto(s)
Vasos Sanguíneos/química , Compuestos Férricos/química , Compuestos Férricos/aislamiento & purificación , Filtración/instrumentación , Campos Magnéticos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...